Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
Blood
Article . 2009 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2009
versions View all 2 versions

Repulsive axon guidance molecule Slit3 is a novel angiogenic factor

Authors: Bing, Zhang; Ursula M, Dietrich; Jian-Guo, Geng; Roy, Bicknell; Jeffrey D, Esko; Lianchun, Wang;

Repulsive axon guidance molecule Slit3 is a novel angiogenic factor

Abstract

Abstract Slits are large, secreted repulsive axon guidance molecules. Recent genetic studies revealed that the Slit3 is dispensable for neural development but required for non-neuron–related developmental processes, such as the genesis of the diaphragm and kidney. Here we report that Slit3 potently promotes angiogenesis, a process essential for proper organogenesis during embryonic development. We observed that Slit3 is expressed and secreted by both endothelial cells and vascular smooth muscle cells in vasculature and that the Slit cognate receptors Robo1 and Robo4 are universally expressed by endothelial cells, suggesting that Slit3 may act in paracrine and autocrine manners to regulate endothelial cells. Cellular function studies revealed that Slit3 stimulates endothelial-cell proliferation, promotes endothelial-cell motility and chemotaxis via interaction with Robo4, and accelerates endothelial-cell vascular network formation in vitro with a specific activity comparable with vascular endothelial growth factor. Furthermore, Slit3 stimulates neovessel sprouting ex vivo and new blood vessel growth in vivo. Consistent with these observations, the Slit3 knockout mice display disrupted angiogenesis during embryogenesis. Taken together, our studies reveal that the repulsive axon guidance molecule Slit3 is a novel and potent angiogenic factor and functions to promote angiogenesis in coordinating organogenesis during embryonic development.

Keywords

Male, Mice, Knockout, Neurogenesis, Endothelial Cells, Gene Expression Regulation, Developmental, Membrane Proteins, Neovascularization, Physiologic, Nerve Tissue Proteins, Receptors, Cell Surface, Chick Embryo, In Vitro Techniques, Axons, Rats, Inbred F344, Cell Line, Rats, Mice, Inbred C57BL, Mice, Animals, Humans, Angiogenic Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    141
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
141
Top 1%
Top 10%
Top 10%
bronze