Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2009
versions View all 2 versions

Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses

Authors: Hongmiao, Song; Rongmin, Zhao; Pengxiang, Fan; Xuchu, Wang; Xianyang, Chen; Yinxin, Li;

Overexpression of AtHsp90.2, AtHsp90.5 and AtHsp90.7 in Arabidopsis thaliana enhances plant sensitivity to salt and drought stresses

Abstract

Three AtHsp90 isoforms, cytosolic AtHsp90.2, chloroplast-located AtHsp90.5, and endoplasmic reticulum (ER)-located AtHsp90.7, were characterized by constitutive overexpressing their genes in Arabidopsis thaliana. Both types of the transgenic plants overexpressing cytosolic and organellar AtHsp90s showed reduced tolerance to salt and drought stresses with lower germination rates and fresh weights, but improved tolerance to high concentration of Ca(2+) comparing with the wild type plants. Transcriptional analysis of ABA-responsive genes, RD29A, RD22 and KIN2 under salt and drought stresses, indicated that the induction expression of these genes was delayed by constitutive overexpression of cytosolic AtHsp90.2, but was hardly affected by that of organellar AtHsp90.5 and AtHsp90.7. These results implied that Arabidopsis different cellular compartments-located Hsp90s in Arabidopsis might be involved in abiotic stresses by different functional mechanisms, probably through ABA-dependent or Ca(2+) pathways, and proper homeostasis of Hsp90 was critical for cellular stress response and/or tolerance in plants.

Related Organizations
Keywords

Arabidopsis Proteins, Reverse Transcriptase Polymerase Chain Reaction, Immunoblotting, Arabidopsis, Salt Tolerance, Sodium Chloride, Blotting, Northern, Plants, Genetically Modified, Droughts, Calcium Chloride, Gene Expression Regulation, Plant, Protein Isoforms, Electrophoresis, Polyacrylamide Gel, Mannitol, HSP90 Heat-Shock Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 10%