Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Cell Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Cell Biology
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos

Authors: Fumio, Motegi; Asako, Sugimoto;

Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans embryos

Abstract

During development, the establishment of cell polarity is important for cells to undergo asymmetric cell divisions that give rise to diverse cell types. In C. elegans embryos, cues from the centrosome trigger the cortical flow of an actomyosin network, leading to the formation of anterior-posterior polarity. However, its precise mechanism is poorly understood. Here, we show that small GTPases have sequential and crucial functions in this process. ECT-2, a potential guanine nucleotide-exchange factor (GEF) for RHO-1, was uniformly distributed at the cortex before polarization, but was excluded from the posterior cortex by the polarity cue from the centrosomes. This local exclusion of ECT-2 led to an asymmetric RHO-1 distribution, which generated a cortical flow of the actomyosin that translocated PAR proteins and CDC-42 (Refs 4, 5) to the anterior cortex. Polarized CDC-42 was, in turn, involved in maintaining the established anterior-cortical domains. Our results suggest that a local change in the function of ECT-2 and RHO-1 links the centrosomal polarity cue with the polarization of the cell cortex.

Keywords

Centrosome, rho GTP-Binding Proteins, Embryo, Nonmammalian, Cell Polarity, Actomyosin, Spindle Apparatus, Protein Transport, Animals, Guanine Nucleotide Exchange Factors, Caenorhabditis elegans, Caenorhabditis elegans Proteins, cdc42 GTP-Binding Protein, Rho Guanine Nucleotide Exchange Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 10%
Top 10%
Top 10%