Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2021
License: CC BY
Data sources: PubMed Central
Genetics
Article . 2024
versions View all 3 versions

Distinct requirements for Pho, Sfmbt, and Ino80 for cell survival in Drosophila

Authors: Elizarev, Pavel; Finkl, Katja; Müller, Jürg;

Distinct requirements for Pho, Sfmbt, and Ino80 for cell survival in Drosophila

Abstract

Abstract The Drosophila proteins Pleiohomeotic (Pho) and its paralog Pho-like (Phol) are the homologs of the mammalian transcription factor YY1. Pho and Phol are subunits of the Polycomb group protein complex PhoRC and they are also stably associated with the INO80 nucleosome remodeling complex. Drosophila lacking both Pho and Phol arrest development as larvae with small misshaped imaginal discs. The basis of this phenotype is poorly understood. We find that in pho phol mutant animals cells retain the capacity to proliferate but show a high incidence of apoptotic cell death that results in tissue hypoplasia. Clonal analyses establish that cells stringently require Pho and Phol to survive. In contrast, the PhoRC subunit Sfmbt and the ATP-dependent nucleosome remodeling factor Ino80 are not essential for cell viability. Pho and Phol, therefore, execute their critical role for cell survival through mechanisms that do not involve Sfmbt function or INO80 nucleosome remodeling.

Keywords

Investigation, Cell Survival, Apoptosis, Nucleosomes, DNA-Binding Proteins, Drosophila melanogaster, Mutation, Animals, Drosophila Proteins, Drosophila, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid