Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2003 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2003
versions View all 3 versions

Computational studies of proton transport through the M2 channel

Authors: Wu, Yujie; Voth, Gregory A;

Computational studies of proton transport through the M2 channel

Abstract

The M2 ion channel is an essential component of the influenza A virus. This low‐pH gated channel has a high selectivity for protons. Evidence from various experimental data has indicated that the essential structure responsible for the channel is a parallel homo‐tetrameric α‐helix bundle having a left‐handed twist with each helix tilted with respect to the membrane normal. A backbone structure has been determined by solid state nuclear magnetic resonance (NMR). Though detailed structures for the side chains are not available yet, evidence has indicated that His37 and Trp41 in the α‐helix are implicated in the local molecular structure responsible for the selectivity and channel gate. More definitive conformations for the two residues were recently suggested based on the known backbone structure and recently obtained NMR data. While two competitive proton‐conductance mechanisms have been proposed, the actual proton‐conductance mechanism remains an unsolved problem. Computer simulations of an excess proton in the channel and computational studies of the His37/Trp41 conformations have provided insights into these structural and mechanism issues.

Related Organizations
Keywords

Ions, Models, Molecular, Magnetic Resonance Spectroscopy, Protein Conformation, Ultraviolet Rays, Selectivity mechanism, Tryptophan, DNA, Hydrogen-Ion Concentration, Protein Structure, Secondary, Viral Matrix Proteins, Influenza A virus M2 ion channel, Computer Simulation, Histidine, Protons, Peptides, Gating mechanism, Proton transport

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Top 10%
Top 10%
bronze