Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Genetics
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Current Genetics
Article . 2016
versions View all 2 versions

Revisiting yeast trehalose metabolism

Authors: Elis, Eleutherio; Anita, Panek; Joelma Freire, De Mesquita; Eduardo, Trevisol; Rayne, Magalhães;
Abstract

Establishing the function of trehalose in yeast cells has led us, over the years, through a long path-from simple energy storage carbohydrate, then a stabilizer and protector of membranes and proteins, through a safety valve against damage caused by oxygen radicals, up to regulator of the glycolytic path. In addition, trehalose biosynthesis has been proposed as a target for novel drugs against several pathogens. Since this pathway is entirely absent in mammalian cells and makes use of highly specific enzymes, trehalose metabolism might be an interesting target for the development of novel therapies. In this review, we want to address some recent points investigated about trehalose metabolism in Saccharomyces cerevisiae, focusing mainly on the mechanism by which this simple disaccharide protects against stress and on the enzymes involved in its synthesis and breakdown. We believe that these concepts are of great importance for medical and biotechnological applications.

Related Organizations
Keywords

Hydrolysis, Yeasts, Carbohydrate Metabolism, Trehalose, Biological Transport, Sugar Phosphates, Saccharomyces cerevisiae, Models, Biological

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    131
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
131
Top 1%
Top 10%
Top 1%