Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Human Molecular Genetics
Article
License: CC BY
Data sources: UnpayWall
Human Molecular Genetics
Article . 2006 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in α-dystroglycanopathies

Authors: Mariko, Taniguchi; Hiroki, Kurahashi; Satoru, Noguchi; Takayasu, Fukudome; Takeshi, Okinaga; Toshifumi, Tsukahara; Youichi, Tajima; +4 Authors

Aberrant neuromuscular junctions and delayed terminal muscle fiber maturation in α-dystroglycanopathies

Abstract

Recent studies have revealed an association between post-translational modification of alpha-dystroglycan (alpha-DG) and certain congenital muscular dystrophies known as secondary alpha-dystroglycanopathies (alpha-DGpathies). Fukuyama-type congenital muscular dystrophy (FCMD) is classified as a secondary alpha-DGpathy because the responsible gene, fukutin, is a putative glycosyltransferase for alpha-DG. To investigate the pathophysiology of secondary alpha-DGpathies, we profiled gene expression in skeletal muscle from FCMD patients. cDNA microarray analysis and quantitative real-time polymerase chain reaction showed that expression of developmentally regulated genes, including myosin heavy chain (MYH) and myogenic transcription factors (MRF4, myogenin and MyoD), in FCMD muscle fibers is inconsistent with dystrophy and active muscle regeneration, instead more of implicating maturational arrest. FCMD skeletal muscle contained mainly immature type 2C fibers positive for immature-type MYH. These characteristics are distinct from Duchenne muscular dystrophy, suggesting that another mechanism in addition to dystrophy accounts for the FCMD skeletal muscle lesion. Immunohistochemical analysis revealed morphologically aberrant neuromuscular junctions (NMJs) lacking MRF4 co-localization. Hypoglycosylated alpha-DG indicated a lack of aggregation, and acetylcholine receptor (AChR) clustering was compromised in FCMD and the myodystrophy mouse, another model of secondary alpha-DGpathy. Electron microscopy showed aberrant NMJs and neural terminals, as well as myotubes with maturational defects. Functional analysis of NMJs of alpha-DGpathy showed decreased miniature endplate potential and higher sensitivities to d-Tubocurarine, suggesting aberrant or collapsed formation of NMJs. Because alpha-DG aggregation and subsequent clustering of AChR are crucial for NMJ formation, hypoglycosylation of alpha-DG results in aberrant NMJ formation and delayed muscle terminal maturation in secondary alpha-DGpathies. Although severe necrotic degeneration or wasting of skeletal muscle fibers is the main cause of congenital muscular dystrophies, maturational delay of muscle fibers also underlies the etiology of secondary alpha-DGpathies.

Keywords

Glycosylation, Gene Expression Profiling, Muscle Fibers, Skeletal, Infant, Newborn, Neuromuscular Junction, Infant, Membrane Proteins, Immunohistochemistry, Muscular Dystrophies, Mice, Microscopy, Electron, Child, Preschool, Animals, Humans, Receptors, Cholinergic, Child, Dystroglycans

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
hybrid