The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber
The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber
AbstractCucumber is dioecious by nature, having both male and female flowers, and is a model system for unisexual flower development. Knowledge related to male flowering is limited, but it is reported to be regulated by transcription factors and hormone signals. Here, we report functional characterization of the cucumber (Cucumis sativus) GL2-LIKE gene, which encodes a homeodomain leucine zipper (HD-ZIP) IV transcription factor that plays an important role in regulating male flower development. Spatial–temporal expression analyses revealed high-level expression of CsGL2-LIKE in the male flower buds and anthers. CsGL2-LIKE is closely related to AtGL2, which is known to play a key role in trichome development. However, ectopic expression of CsGL2-LIKE in Arabidopsis gl2-8 mutant was unable to rescue the gl2-8 phenotype. Interestingly, the silencing of CsGL2-LIKE delayed male flowering by inhibiting the expression of the florigen gene FT and reduced pollen vigor and seed viability. Protein–protein interaction assays showed that CsGL2-LIKE interacts with the jasmonate ZIM domain protein CsJAZ1 to form a HD-ZIP IV–CsJAZ1 complex. Collectively, our study indicates that CsGL2-LIKE regulates male flowering in cucumber, and reveals a novel function of a HD-ZIP IV transcription factor in regulating male flower development of cucumber.
- China Agricultural University China (People's Republic of)
- College of Horticulture India
Homeodomain Proteins, Leucine Zippers, Fertility, Gene Expression Regulation, Plant, Cucumis sativus, Research Papers, Plant Proteins, Transcription Factors
Homeodomain Proteins, Leucine Zippers, Fertility, Gene Expression Regulation, Plant, Cucumis sativus, Research Papers, Plant Proteins, Transcription Factors
2 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).30 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
