Epigenetic silencing of Kruppel like factor-3 increases expression of pro-metastatic miR-182
Epigenetic silencing of Kruppel like factor-3 increases expression of pro-metastatic miR-182
Accumulating evidence indicates that microRNAs (miRs) regulate cancer metastasis. We have shown that miR-182 drives sarcoma metastasis in vivo by coordinated regulation of multiple genes. Recently, we also demonstrated that in a subset of primary sarcomas that metastasize to the lung, miR-182 expression is elevated through binding of MyoD1 to the miR-182 promoter. However, it is not known if there are also transcription factors that inhibit miR-182 expression. Defining negative regulators of miR-182 expression may help explain why some sarcomas do not metastasize and may also identify pathways that can modulate miR-182 for therapeutic benefit. Here, we use an in silico screen, chromatin-immunoprecipitation, and luciferase reporter assays to discover that Kruppel like factor-3 (Klf-3) is a novel transcriptional repressor of miR-182. Knockdown of Klf-3 increases miR-182 expression, and stable overexpression of Klf-3, but not a DNA-binding mutant Klf-3, decreases miR-182 levels. Klf-3 expression is downregulated in both primary mouse and human metastatic sarcomas, and Klf-3 levels negatively correlate with miR-182 expression. Interestingly, Klf-3 also negatively regulates MyoD1, suggesting an alternative mechanism for Klf-3 to repress miR-182 expression in addition to direct binding of the miR-182 promoter. Using Methylation Specific PCR (MSP) and pyrosequencing assays, we found that Klf-3 is epigenetically silenced by DNA hypermethylation both in mouse and human sarcoma cells. Finally, we show the DNA methylation inhibitor 5'Azacytidine (Aza) restores Klf-3 expression while reducing miR-182 levels. Thus, our findings suggest that demethylating agents could potentially be used to modulate miR-182 levels as a therapeutic strategy.
- Duke University United States
- Duke University Hospital United States
- Duke University Medical Center
- Duke Medical Center United States
- DUKE UNIVERSITY MEDICAL CENTER
Lung Neoplasms, Base Sequence, Kruppel-Like Transcription Factors, Mice, Nude, Mice, Transgenic, Sarcoma, DNA Methylation, Epigenesis, Genetic, Gene Expression Regulation, Neoplastic, MicroRNAs, Cell Line, Tumor, Animals, Humans, Promoter Regions, Genetic, Neoplasm Transplantation
Lung Neoplasms, Base Sequence, Kruppel-Like Transcription Factors, Mice, Nude, Mice, Transgenic, Sarcoma, DNA Methylation, Epigenesis, Genetic, Gene Expression Regulation, Neoplastic, MicroRNAs, Cell Line, Tumor, Animals, Humans, Promoter Regions, Genetic, Neoplasm Transplantation
33 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).21 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
