Powered by OpenAIRE graph

β-adrenergic Receptor Polymorphisms and Responses during Titration of Metoprolol Controlled Release/extended Release in Heart Failure*

Authors: Steven G, Terra; Daniel F, Pauly; Craig R, Lee; J Herbert, Patterson; Kirkwood F, Adams; Richard S, Schofield; Bernadette S, Belgado; +8 Authors

β-adrenergic Receptor Polymorphisms and Responses during Titration of Metoprolol Controlled Release/extended Release in Heart Failure*

Abstract

beta-Blockers require careful initiation and titration when used in patients with heart failure. Some patients tolerate beta-blocker therapy initiation without difficulty, whereas in other patients this period presents clinical challenges. We tested the hypothesis that polymorphisms at codons 389 (Arg389Gly) and 49 (Ser49Gly) of the beta(1)-adrenergic receptor would be associated with differences in initial tolerability of beta-blocker therapy in patients with heart failure. We also tested whether polymorphisms in the beta(2)-adrenergic receptor, G-protein alpha s subunit (G(s)alpha), and cytochrome P450 (CYP) 2D6 genes or S-metoprolol plasma concentrations were associated with beta-blocker tolerability.Sixty-one beta-blocker-naive patients with systolic heart failure were prospectively enrolled. Patients began taking 12.5 to 25 mg metoprolol controlled release/extended release with titration every 2 weeks (as tolerated) to 200 mg/d or the maximum tolerated dose over a period of 8 to 10 weeks. Decompensation was the composite of death, heart failure hospitalization, increase in other heart failure medications, or need to discontinue metoprolol. End points were assessed during the titration period.The overall rate of decompensation was not different between the codon 49 or 389 genotypes. However, a significantly greater percentage of patients with the Gly389 variant required increases in heart failure medications as compared with Arg389 homozygotes (48% versus 14%, respectively; P = .006). Similarly, patients with the Ser49 homozygous genotype were significantly more likely to require increases in concomitant heart failure therapy as compared with Gly49 carriers (41% versus 11%, respectively; P = .03). Neither CYP2D6 genotypes nor metoprolol pharmacokinetics differed between patients with and those without a decompensation event. There was no association between the beta(2)-adrenergic receptor or G(s)alpha polymorphisms with decompensated heart failure.Patients with the Gly389 variant and Ser49Ser genotype were significantly more likely to require increases in heart failure medications during beta-blocker titration and thus may require more frequent follow-up during titration.

Related Organizations
Keywords

Heart Failure, Male, Exercise Tolerance, Polymorphism, Genetic, Genotype, Drug Resistance, Middle Aged, Drug Administration Schedule, Phenotype, Treatment Outcome, Cytochrome P-450 CYP2D6, Pharmacogenetics, Delayed-Action Preparations, Time and Motion Studies, Receptors, Adrenergic, beta, GTP-Binding Protein alpha Subunits, Gs, Humans, Metoprolol

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    125
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
125
Top 10%
Top 10%
Top 1%