Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Expert Systems with ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Expert Systems with Applications
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions

A latent Beta-Liouville allocation model

Authors: Ali Shojaee Bakhtiari; Nizar Bouguila;

A latent Beta-Liouville allocation model

Abstract

A latent Beta-Liouville allocation model is proposed.The proposed model is learned using a principled variational approach.The model is applied to the challenging problems of visual scene and text categorization, and action recognition. There has been a constant desire for proposing new machine learning approaches for count data modeling. One of the most referred approaches is the latent Dirichlet allocation (LDA) model (Blei et?al., 2003b). LDA has been shown to be a reliable model for count data classification. It is based, however, on the consideration of the Dirichlet distribution, as a prior, which modeling capabilities have been challenged recently and some alternative priors have been proposed. One of these priors is the Beta-Liouville (BL) distribution that we will consider in this work to provide an alternative to the LDA model. In order to maintain consistency with the original model we shall call our resulting model, latent Beta-Liouville allocation (LBLA). Like the LDA, the LBLA model uses a variational Bayes method for learning its hidden parameters. It will be shown that LDA is a special case of the LBLA model that we will show its merits, in comparison to the LDA model, via three distinct challenging applications namely text classification, natural scene categorization, and action recognition in videos. We will show that the LBLA model results in improved modeling accuracy in return for a slight increase in computational complexity. We conclude that our model can be considered as a more efficient replacement for the LDA model.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average