Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

SA‐inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA‐responsive PDF1.2 transcription

Authors: Ndamukong, Ivan; Al Abdallat, Ayed; Thurow, Corinna; Fode, Benjamin; Zander, Mark; Weigel, Ralf; Gatz, Christiane;

SA‐inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA‐responsive PDF1.2 transcription

Abstract

SummarySalicylic acid (SA) is a plant signaling molecule that mediates the induction of defense responses upon attack by a variety of pathogens. Moreover, it antagonizes gene induction by the stress signaling molecule jasmonic acid (JA). Several SA‐responsive genes are regulated by basic/leucine zipper‐type transcription factors of the TGA family. TGA factors interact with NPR1, a central regulator of many SA‐induced defense responses including SA/JA antagonism. In order to identify further regulatory proteins of SA‐dependent signaling pathways, a yeast protein interaction screen with tobacco TGA2.2 as bait and an Arabidopsis thaliana cDNA prey library was performed and led to the identification of a member of the glutaredoxin family (GRX480, encoded by At1g28480). Glutaredoxins are candidates for mediating redox regulation of proteins because of their capacity to catalyze disulfide transitions. This agrees with previous findings that the redox state of both TGA1 and NPR1 changes under inducing conditions. Transgenic Arabidopsis plants ectopically expressing GRX480 show near wild‐type expression of standard marker genes for SA‐ and xenobiotic‐inducible responses. In contrast, transcription of the JA‐dependent defensin gene PDF1.2 was antagonized by transgenic GRX480. This, together with the observation that GRX480 transcription is SA‐inducible and requires NPR1, suggests a role of GRX480 in SA/JA cross‐talk. Suppression of PDF1.2 by GRX480 depends on the presence of TGA factors, indicating that the GRX480/TGA interaction is effective in planta.

Keywords

Transcriptional Activation, Chromatin Immunoprecipitation, Base Sequence, Transcription, Genetic, Arabidopsis Proteins, Molecular Sequence Data, Arabidopsis, Nuclear Proteins, Cyclopentanes, Blotting, Northern, Plants, Genetically Modified, Models, Biological, Basic-Leucine Zipper Transcription Factors, Gene Expression Regulation, Plant, Amino Acid Sequence, Oxylipins, Oxidoreductases, Salicylic Acid, Glutaredoxins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    367
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
367
Top 1%
Top 1%
Top 1%
Green
bronze