Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Structural & ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Structural & Molecular Biology
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2008
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Structural & Molecular Biology
Article . 2008 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions

Capped small RNAs and MOV10 in human hepatitis delta virus replication

Authors: Haussecker, Dirk; Cao, Dan; Huang, Yong; Parameswaran, Poornima; Fire, Andrew Z.; Kay, Mark A.;

Capped small RNAs and MOV10 in human hepatitis delta virus replication

Abstract

The evolutionary origin of human hepatitis delta virus (HDV) replication by RNA-directed transcription is unclear. Here we identify two species of 5'-capped, approximately 18-25-nucleotide small RNAs. One was of antigenomic polarity, corresponding to the 5' end of hepatitis delta antigen (HDAg) mRNA, and interacted with HDAg and RNA polymerase II (Pol II), whereas the other mapped to a structurally analogous region on the genomic RNA hairpin. An HDAg-interaction screen indicated that HDAg interacts with MOV10, the human homolog of the Arabidopsis thaliana RNA amplification factor gene SDE3 and Drosophila melanogaster RISC-maturation factor gene Armitage (armi). MOV10 knockdown inhibited HDV replication, but not HDAg mRNA translation, further supporting a role for MOV10 in RNA-directed transcription. Together, our studies define RNA hairpins as critical elements for the initiation of HDV-related, RNA-directed transcription. The identification of capped small RNAs and the involvement of MOV10 in HDV replication further suggest a conserved mechanism related to RNA-directed transcription in lower eukaryotes.

Related Organizations
Keywords

Hepatitis delta Antigens, RNA Caps, Base Sequence, Molecular Sequence Data, Genome, Viral, Sequence Analysis, DNA, Hydroxylation, Virus Replication, Article, RNA Transport, Cell Line, RNA, Complementary, DNA-Binding Proteins, Humans, Nucleic Acid Conformation, RNA, Viral, RNA, Messenger, Cloning, Molecular, Hepatitis Delta Virus, RNA Helicases, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    70
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
70
Top 10%
Top 10%
Top 10%
Green
hybrid