Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Diabetes Carearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes Care
Article . 2009 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Diabetes Care
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions

Microalbuminuria in Type 1 Diabetes Is Associated With Enhanced Excretion of the Endocytic Multiligand Receptors Megalin and Cubilin

Authors: John L. Fowlkes; Samuel G. Mackintosh; Ricky D. Edmondson; Kathryn M. Thrailkill; Teresa Nimmo; R. Clay Bunn; Cynthia S. Moreau; +1 Authors

Microalbuminuria in Type 1 Diabetes Is Associated With Enhanced Excretion of the Endocytic Multiligand Receptors Megalin and Cubilin

Abstract

OBJECTIVE Proteinuria is the hallmark of diabetic nephropathy; yet, glomerular histology does not fully explain mechanisms contributing to proteinuria. Our objective was to identify proteins in the urine of individuals with type 1 diabetes and microalbuminuria that might implicate a mechanistic pathway operative in proteinuria. RESEARCH DESIGN AND METHODS Using a GeLC/MS platform proteomics approach, we compared the urine proteome from 12 healthy nondiabetic individuals, 12 subjects with type 1 diabetes yet normal urinary albumin excretion rates, and 12 subjects with type 1 diabetes and microalbuminuria (type 1 diabetes + microalbuminuria). RESULTS The abundance of megalin and cubilin, two multiligand receptors expressed in kidney proximal tubule cells and involved with the reuptake of filtered albumin and megalin/cubilin ligands, was significantly increased in type 1 diabetes + microalbuminuria urine, compared with both nonalbuminuric groups. CONCLUSIONS Aberrant shedding of megalin and cubilin could contribute to albuminuria in diabetes and to deficiency states of important vitamins and hormones.

Keywords

Male, Proteomics, Blood Pressure, Receptors, Cell Surface, Low Density Lipoprotein Receptor-Related Protein-2, Diabetes Mellitus, Type 1, Reference Values, Albuminuria, Humans, Diabetic Nephropathies, Female, Original Research, Adaptor Proteins, Signal Transducing, Glomerular Filtration Rate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    97
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
97
Top 10%
Top 10%
Top 10%
Green
hybrid