Scan statistics analysis for detection of introns in time-course tiling array data
pmid: 24572987
Scan statistics analysis for detection of introns in time-course tiling array data
AbstractA tiling array yields a series of abundance measurements across the genome using evenly spaced probes. These data can be used for detecting sequences that exhibit a particular behavior. Scanning window statistics are often employed for testing each probe while accounting for local correlation and smoothing noisy measurements. However, window testing may yield false probe discoveries around the sequences and false non-discoveries within the sequences, resulting in biased predicted intervals. We propose to avoid this problem by stipulating that a sequence of interest can appear at most once within a defined region, such as a gene; thus, only one window statistic is considered per region. This substantially reduces the number of tests and hence, is potentially more powerful. We compare this approach to a genome-wise scan that does not require pre-defined search regions, but considers clumps of adjacent probe discoveries. Simulations show that the gene-wise search maintains the nominal FDR level, while the genome-wise scan yields FDR that exceeds the nominal level for low interval effects, and achieves slightly less power. Using arrays to map introns in yeast, we identified 71% of the previously published introns, detected nine previously undiscovered introns, and observed no false intron discoveries by either method.
- University of Haifa Israel
- Stanford University United States
gene-wise search, scan statistic, Genome, General biostatistics, introns, Computational Biology, Saccharomyces cerevisiae, \textit{Saccharomyces cerevisiae}, Models, Theoretical, Introns, Meiosis, meiosis, tiling arrays, Genetics and epigenetics, Algorithms
gene-wise search, scan statistic, Genome, General biostatistics, introns, Computational Biology, Saccharomyces cerevisiae, \textit{Saccharomyces cerevisiae}, Models, Theoretical, Introns, Meiosis, meiosis, tiling arrays, Genetics and epigenetics, Algorithms
17 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
