Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Biology
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

p53 Inhibits Strand Exchange and Replication Fork Regression Promoted by Human Rad51

Authors: Dennis, Yoon; Yuzhen, Wang; Kenneth, Stapleford; Lisa, Wiesmüller; Junghuei, Chen;

p53 Inhibits Strand Exchange and Replication Fork Regression Promoted by Human Rad51

Abstract

We explore the effects of p53 on strand exchange as well as regression of stalled replication forks promoted by human Rad51. We have found that p53 specifically inhibits strand exchange mediated by human Rad51, but not by Escherichia coli RecA. In addition, we provide in vitro evidence that human Rad51 can promote regression of a stalled replication fork, and p53 also inhibits this fork regression. Furthermore, we show that two cancer-related p53 mutant proteins cannot inhibit strand exchange and fork regression catalyzed by human Rad51. The results establish a direct functional link between p53 and human Rad51, and reveal that one of p53's functions in genome stabilization may be to prevent detrimental genome rearrangements promoted by human Rad51. Thus, the results support the hypothesis that p53 contributes to genome stability by a transcription-independent modulation of homologous recombination.

Related Organizations
Keywords

DNA Replication, Recombination, Genetic, Escherichia coli Proteins, DNA, Single-Stranded, DNA-Binding Proteins, Rec A Recombinases, Nucleoproteins, Animals, Humans, Nucleic Acid Conformation, Rad51 Recombinase, Tumor Suppressor Protein p53, DNA Damage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%