Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BioMed Research Inte...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMed Research International
Article . 2019 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BioMed Research International
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2019
License: CC BY
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease

Authors: LongGui Ning; Guodong Shan; Zeyu Sun; Fenming Zhang; Chengfu Xu; Xinhe Lou; Sha Li; +3 Authors

Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease

Abstract

Inflammatory bowel disease (IBD) has become a major health challenge worldwide. However, the precise etiological and pathophysiological factors involved in IBD remain unclear. Proteomics can be used for large-scale protein identification analysis. In the current study, using tandem mass tag- (TMT-) based shotgun proteomics, proteomic differences between intestinal tissue from health controls, patients with Crohn’s disease (CD), and patients with ulcerative colitis (UC) were compared. Proteins with fold change >2 or <0.5 and P value < 0.05 between groups were considered differentially expressed. ProteinAtlas was used to analyze the tissue specificity of differentially expressed proteins (DEPs). Reactome pathway analysis was applied to cluster functional pathways. A total of 4786 proteins were identified, with 59 proteins showing higher levels and 43 showing lower levels in patients with IBD than in controls. Seventeen proteins, including angiotensin converting enzyme 2 (ACE2) and angiotensin converting enzyme 1 (ACE), showed higher levels in CD than in UC. Several novel proteins such as CD38, chitinase 3-like 1 (CHI3L1), olfactomedin 4 (OLFM4), and intelectin 1 were screened out between patients with IBD and controls. When proteins with fold change >1.2 or <0.84 and P value < 0.05 between groups were considered differentially expressed, the expression of 10 proteins, including CD38, involved in the nicotinamide adenine dinucleotide (NAD) metabolism and signaling pathway showed significant changes in IBD. Using the NCBI GEO database, we confirmed increased CD38 mRNA expression in patients with UC and in mouse colitis models. Protein CD38 expression was higher in CD and UC than in normal controls. CD38 expression was higher in inflamed tissues than in noninflamed tissues, and CD38 was located in F4/80-positive cells. Our study may provide novel insights into the molecular pathogenesis of IBD. Further studies are required on the role of NAD metabolism and CD38 in intestinal inflammation.

Related Organizations
Keywords

Male, Proteomics, Membrane Glycoproteins, NAD, ADP-ribosyl Cyclase 1, Disease Models, Animal, Mice, Crohn Disease, Animals, Humans, Colitis, Ulcerative, Female, Research Article, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 1%
Top 10%
Top 1%
Green
gold