Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thoracic ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thoracic Oncology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Thoracic Oncology
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thoracic Oncology
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Prognostic Implications of Epidermal Growth Factor Receptor and KRAS Gene Mutations and Epidermal Growth Factor Receptor Gene Copy Numbers in Patients with Surgically Resectable Non-small Cell Lung Cancer in Taiwan

Authors: Yi-Cheng Wu; Hong-Dar Isaac Wu; Wen-You Hsieh; Shiu-Feng Huang; Shiu-Feng Huang; Shiu-Feng Huang; Ya-Ting Chen; +5 Authors

Prognostic Implications of Epidermal Growth Factor Receptor and KRAS Gene Mutations and Epidermal Growth Factor Receptor Gene Copy Numbers in Patients with Surgically Resectable Non-small Cell Lung Cancer in Taiwan

Abstract

The prognostic role of epidermal growth factor receptor (EGFR) mutations in patients with surgically resectable non-small cell lung cancer (NSCLC) without EGFR tyrosine kinase inhibitor treatment has not been well established, because the reports are still few.We analyzed the survival data of 164 patients with surgically resectable (stages I to IIIA) NSCLC of two year groups (1996-1998 and 2002-2004), and compared with EGFR mutations, KRAS mutations, and EGFR gene copy numbers.Comparing the survival of wild-type patients and patients having L858R mutations or exon 19 deletion, the median survival was much longer for patient with EGFR mutations (54.7 months) than wild type (34.9 months). The difference was not statistically significant by univariate analysis (p = 0.1981) but had borderline significance by multivariate analyses (p = 0.0506). In addition, the 3-year survival rates of patients with EGFR mutations were also significantly higher than wild type (p = 0.0232). After exclusion of 18 patients treated by EGFR-tyrosine kinase inhibitor for tumor recurrence, the trends were still the same. Patients with KRAS mutations had shorter median survival (21 months) than wild type (44.4 months). Patients with EGFR polysomy (>==copies) also had longer median survival (56.2 months) than wild type (53.4 months). But the survival differences of these two genetic markers were all not significant statistically.It is intriguing that patients with NSCLC with EGFR mutations had better survival than wild type. Such a tumor biology may confound the survival data in a study without the stratification by EGFR mutation.

Keywords

Pulmonary and Respiratory Medicine, Male, Lung Neoplasms, Survival, EGFR, Gene Dosage, Taiwan, Adenocarcinoma, Proto-Oncogene Proteins p21(ras), Carcinoma, Non-Small-Cell Lung, Proto-Oncogene Proteins, KRAS, Chemotherapy, Humans, Neoplasms, Squamous Cell, Aged, Retrospective Studies, Copy number, ErbB Receptors, Survival Rate, Treatment Outcome, Oncology, Mutation, ras Proteins, Female, Lung cancer

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
hybrid
Related to Research communities
Cancer Research