Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Placentaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Placenta
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Differential intracellular localisation of the Menkes and Wilson copper transporting ATPases in the third trimester human placenta

Authors: B, Hardman; S, Luff; M L, Ackland;

Differential intracellular localisation of the Menkes and Wilson copper transporting ATPases in the third trimester human placenta

Abstract

Copper is an essential trace element necessary for normal growth and development. During pregnancy, copper is transported from the maternal circulation to the fetus by mechanisms which have not been clearly elucidated. Two copper transporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND) are known to be expressed in the placenta and are thought to have a role in copper transport to the fetus. In this study, the intracellular localisation of the MNK and WND proteins in the third trimester human placental tissue was investigated in detail using double-label immunohistochemistry and immuno-electron microscopy. MNK and WND were differentially localised within the placenta. MNK was present at the basal side of the syncytiotrophoblast layer and also within the fetal vascular endothelial cells, whereas WND was localised at the microvillous membrane of the syncytiotrophoblast. These data offer some insights into possible differential roles for MNK and WND within the placenta.

Keywords

Adenosine Triphosphatases, Placenta, Pregnancy Trimester, Third, Fluorescent Antibody Technique, Immunohistochemistry, Trophoblasts, Protein Transport, Copper-Transporting ATPases, Pregnancy, Humans, Female, Tissue Distribution, Cation Transport Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%