Reelin acts as a stop signal for radially migrating neurons by inducing phosphorylation of n-cofilin at the leading edge
Reelin acts as a stop signal for radially migrating neurons by inducing phosphorylation of n-cofilin at the leading edge
The extracellular matrix protein Reelin, secreted by Cajal-Retzius (CR) cells in the marginal zone (MZ) of the cerebral cortex, is important for neuronal migration during development. Two lipoprotein receptors for Reelin have been identified, apolipoprotein E receptor 2 (ApoER2) and the very low-density lipoprotein receptor (VLDLR). The binding of Reelin to these receptors induces tyrosine phosphorylation of an adapter protein, disabled 1 (Dab1) by src family kinases (SFKs). In the Reelin-deficient mutant reeler, cortical lamination is inverted with many neurons invading the marginal zone and others that are unable to migrate to their destinations and accumulate underneath their predecessors, suggesting a role for Reelin signaling in dynamic cytoskeletal reorganization. At present these effects of Reelin are poorly understood. In our recent study, we showed that Reelin induces serine3 phosphorylation of n-cofilin, an actin-depolymerizing protein promoting the disassembly of F-actin. Phosphorylation of cofilin renders it unable to depolymerize F-actin, thus stabilizing the cytoskeleton. We provided evidence for ApoER2, Dab1, SFKs and phosphatidylinositol-3-kinase (PI3K) to be involved in Reelin-induced cofilin phosphorylation. We found that phosphorylation of cofilin occurs in the leading processes of radially migrating neurons as they grow towards the Reelin-containing marginal zone. By cofilin phosphorylation, Reelin may act as a stop signal for radially migrating neurons.
- University of Freiburg Germany
QH301-705.5, Biology (General)
QH301-705.5, Biology (General)
3 Research products, page 1 of 1
- 2015IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
