Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Immunology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Targeting Poly(I:C) to the TLR3-Independent Pathway Boosts Effector CD8 T Cell Differentiation through IFN-α/β

Authors: Soo M, Ngoi; Michael G, Tovey; Anthony T, Vella;

Targeting Poly(I:C) to the TLR3-Independent Pathway Boosts Effector CD8 T Cell Differentiation through IFN-α/β

Abstract

AbstractPoly(I:C) is an adjuvant used for antitumor treatment and vaccines because of its prominent effects on CD8 T cells and NK cells. Poly(I:C) binds TLR3 and this interaction is thought to be central for driving cell-mediated immune responses. We investigated the importance of TLR3 in poly(I:C)-mediated endogenous CD8 T cell responses using the pathogenic T cell stimulant Staphylococcus aureus enterotoxin A. While the responsive CD8 T cells expanded comparably in both wild-type and TLR3−/− mice, differentiation of effector CD8 T cells was enhanced by poly(I:C) in the TLR3−/− mice. A higher percentage of Ag-specific CD8 T cells became IFN-γ and TNF-α producers in the absence of TLR3 signaling. Consistent with this boosted response was the observation that TLR3-deficient cells synthesized less IL-10 compared with TLR3-sufficient cells in response to poly(I:C). Ultimately, however, the fundamental mechanism of CD8 effector T cell differentiation through the TLR3-independent pathway was shown to be completely IFN-α/β-dependent. Administration of IFN-α/β-neutralizing Abs abolished the poly(I:C) effects in TLR3−/− mice. These findings reveal specific roles of how dsRNA receptors shape CD8 T cell responses, which should be considered as poly(I:C) is authenticated as a therapeutic adjuvant used in vaccines.

Keywords

Mice, Knockout, Staphylococcus aureus, Tumor Necrosis Factor-alpha, Interferon-alpha, Cell Differentiation, Interferon-beta, CD8-Positive T-Lymphocytes, Cancer Vaccines, Antibodies, Interleukin-10, Toll-Like Receptor 3, Killer Cells, Natural, Enterotoxins, Interferon-gamma, Mice, Poly I-C, Adjuvants, Immunologic, Animals, RNA, Double-Stranded, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 10%
Top 10%
Top 10%
bronze