PMSM Rotor Position Detection Based on Hybrid Optical Encoder and R-Signal Zero-Setting Scheme
doi: 10.1155/2016/2712643
PMSM Rotor Position Detection Based on Hybrid Optical Encoder and R-Signal Zero-Setting Scheme
Rotor position detection is a prerequisite for achieving good control performance of PMSM. For a PMSM control system based on an optical encoder, it is a difficulty to detect rotor position and achieve R-Signal zero-setting. To solve the problem, a hybrid optical encoder is used in the paper by which a scheme for rotor position detection and R-Signal zero-setting is proposed. This encoder can do absolute and incremental rotor position detection simultaneously; here, the former is used for acquiring imprecise rotor position and the latter is for precise rotor position. Firstly, two detection methods of the encoder are analyzed, and a scheme for rotor position detection is proposed: absolute rotor position is used for motor starting before achieving R-Signal zero-setting; once achieving R-Signal zero-setting, incremental rotor position detection that has high precision is adopted. Then a novel scheme for R-Signal zero-setting is emphatically proposed. Finally, the simulation is conducted. Results show that rotor position detection and R-Signal zero-setting can be achieved by the proposed scheme.
- Zhengzhou University China (People's Republic of)
Electronic computers. Computer science, QA75.5-76.95, TA1-2040, Engineering (General). Civil engineering (General)
Electronic computers. Computer science, QA75.5-76.95, TA1-2040, Engineering (General). Civil engineering (General)
3 Research products, page 1 of 1
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
