Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-1-...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

ESCRT Mutant Analysis and Imaging of ESCRT Components in the Model Fungus Ustilago maydis

Authors: Carl, Haag; Thomas, Klein; Michael, Feldbrügge;

ESCRT Mutant Analysis and Imaging of ESCRT Components in the Model Fungus Ustilago maydis

Abstract

The ESCRT machinery (endosomal sorting complex required for transport) is an evolutionarily highly conserved multiprotein complex involved in numerous cellular processes like endocytosis, membrane repair, or endosomal long-distance transport. In fungal hyphae, endocytosis and long-distance mRNA transport are tightly linked, as endocytotic vesicles are also the key carrier vehicles for mRNAs. Studying the regulatory component Did2 (CHMP1) in the plant pathogen Ustilago maydis revealed that loss of Did2 resulted in disturbed endosomal maturation, thereby causing defects in microtubule-dependent transport of early endosomes. Here, we describe methods and protocols that allow studying the role of ESCRT components during endosomal transport. We present experimental strategies to analyze U. maydis ESCRT mutant phenotypes and test complementation with heterologous components, such as ESCRT regulators from Drosophila melanogaster.

Keywords

Endosomal Sorting Complexes Required for Transport, Intravital Microscopy, Hyphae, Endosomes, Ectopic Gene Expression, Fungal Proteins, Microscopy, Fluorescence, Ustilago, Drosophila Proteins, Sequence Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average