Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Endocrinologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Endocrinology
Article
Data sources: UnpayWall
Endocrinology
Article . 2005 . Peer-reviewed
Data sources: Crossref
Endocrinology
Article . 2005
versions View all 2 versions

Insulin Alone Increases Hypothalamo-Pituitary-Adrenal Activity, and Diabetes Lowers Peak Stress Responses

Authors: Owen, Chan; Karen, Inouye; Eitan, Akirav; Edward, Park; Michael C, Riddell; Mladen, Vranic; Stephen G, Matthews;

Insulin Alone Increases Hypothalamo-Pituitary-Adrenal Activity, and Diabetes Lowers Peak Stress Responses

Abstract

Diabetes is associated with increased basal hypothalamo-pituitary-adrenal (HPA) activity and impaired stress responsiveness. Previously, we demonstrated that the HPA response to hypoglycemia is significantly impaired in diabetic rats. In this study our goals were to 1) differentiate between the effects of hyperinsulinemia and those of hypoglycemia per se, and 2) establish whether diabetes lowers peak stress responses. Normal and streptozotocin-diabetic rats were subjected to hyperinsulinemic-euglycemic glucose clamps to evaluate central and peripheral responses. These were compared with peak ACTH and corticosterone responses to restraint and hypoglycemia. Hyperinsulinemia increased CRH and vasopressin mRNA, and plasma ACTH and corticosterone in normal and diabetic rats. In normal animals, insulin-induced activation of ACTH and corticosterone was lower than the responses during either restraint or hypoglycemia. In contrast, ACTH and corticosterone activation in diabetic rats was similar with all three stressors. Pituitary-adrenal axis activation in diabetic animals was also much lower compared with that in normal controls. The response to hyperinsulinemia (euglycemia) was associated with increases in glucocorticoid receptor mRNA in the anterior pituitary and paraventricular nucleus. Hippocampal mineralocorticoid receptor mRNA expression was increased in normal, but not in diabetic, animals. We speculate that the ability to appropriately match the HPA response to the potency of a stressor is related to the ability to alter hippocampal mineralocorticoid receptor expression. In diabetes, this ability is impaired; hence, maximal HPA activation is greatly diminished. This is a novel observation that may have important implications in the treatment of impaired counterregulatory mechanisms in human diabetes.

Related Organizations
Keywords

Male, Corticotropin-Releasing Hormone, Body Weight, Hypothalamus, Pituitary-Adrenal System, Hippocampus, Hormones, Diabetes Mellitus, Experimental, Rats, Rats, Sprague-Dawley, Catecholamines, Adrenocorticotropic Hormone, Adrenal Cortex Hormones, Stress, Physiological, Animals, Insulin, RNA, Messenger, Corticosterone, In Situ Hybridization, Densitometry

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
bronze