Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Insect Biochemistry ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Insect Biochemistry and Molecular Biology
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides

Authors: Yanan Tian; Chaohui Jiang; Yi Pan; Zhiqiang Guo; Weiwei Wang; Xumei Luo; Zheng Cao; +5 Authors

Bombyx neuropeptide G protein-coupled receptor A14 and A15 are two functional G protein-coupled receptors for CCHamide neuropeptides

Abstract

CCHamides are newly identified insect neuropeptides, which are widely occurring in most insects. However, our knowledge about their signaling characteristics and physiological roles is still limited. Here, we cloned two full-length cDNAs encoding putative CCHamide receptors, Bombyx neuropeptide GPCR A14 (BNGR-A14) and -A15 (BNGR-A15), from the brain of B. mori larvae. Characterization of signaling indicated that Bombyx CCHamide-1 and CCHamide-2 are specific endogenous ligands for BNGR-A15 and BNGR-A14, respectively. Further functional assays combined with specific inhibitors demonstrated that upon activation by CCHamide-2, BNGR-A14 elicited significant increases in CRE-driven luciferase activity, intracellular Ca2+ mobilization and ERK1/2 phosphorylation in a Gq inhibitor-sensitive manner, while BNGR-A15 was activated by CCHamide-1, thus leading to intracellular accumulation of cAMP, Ca2+ mobilization, and ERK1/2 phosphorylation in a Gs and Gq inhibitor-sensitive manner. Based on these findings, we designated the receptors BNGR-A15 and -A14 as Bommo-CCHaR-1 and -2, respectively. In addition, our results showed that CCHamides are considered to require intrachain disulfide bonds to activate their respective receptor in the physiological concentration range. Moreover, quantitative RT-PCR analysis revealed that CCHamide-1 is more likely to serve as a brain-gut peptide to regulate feeding behavior and growth through BNGR-A15, whereas the CCHamide-2 signaling system might play an important role in the control of multiple physiological processes. Our findings provide in-depth information on CCHamide-1 and -2-mediated signaling, facilitating further elucidation of their endocrinological roles in the regulation of fundamental physiological processes.

Related Organizations
Keywords

Receptors, Neuropeptide, Insecta, Neuropeptides, Animals, Insect Proteins, Feeding Behavior, Bombyx, Receptors, G-Protein-Coupled, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average