Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuroscience Lettersarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience Letters
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Increased sensitivity to halothane but decreased sensitivity to propofol in mice lacking the N-type Ca2+ channel

Authors: Tetsuhiro, Takei; Hironao, Saegusa; Shuqin, Zong; Takayuki, Murakoshi; Koshi, Makita; Tsutomu, Tanabe;

Increased sensitivity to halothane but decreased sensitivity to propofol in mice lacking the N-type Ca2+ channel

Abstract

Volatile anesthetics are known to depress excitatory synaptic transmission. Inhibition of voltage-dependent Ca2+ channels is speculated to underlie this mechanism, which remains to be clarified in vivo. We examined the sensitivity to halothane in mice lacking the N-type Ca2+ channel, a major contributor of presynaptic neurotransmitter release. Sensitivity to halothane was significantly increased in the knockout mice compared with the wild-type littermates. Halothane also depressed field excitatory postsynaptic potentials recorded from the Schaffer collateral-CA1 hippocampal synapses more greatly in the knockout mice. We further examined sleep time induced by injection of propofol, an intravenous anesthetic that mainly affects inhibitory synaptic transmission. In contrast, sensitivity to propofol was significantly decreased in the knockout mice. We suggest that inhibition of the N-type Ca2+ channel underlies mechanisms of halothane anesthesia but counteracts propofol anesthesia.

Related Organizations
Keywords

Mice, Knockout, Heterozygote, Dose-Response Relationship, Drug, Homozygote, Excitatory Postsynaptic Potentials, Blood Pressure, In Vitro Techniques, Hippocampus, Mice, Calcium Channels, N-Type, Heart Rate, Anesthetics, Inhalation, Reflex, Animals, Halothane, Sleep, Propofol, Anesthetics, Intravenous, Pain Measurement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%