<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>PI3K-dependent host cell actin rearrangements are required for Cronobacter sakazakii invasion of human brain microvascular endothelial cells
pmid: 20809254
PI3K-dependent host cell actin rearrangements are required for Cronobacter sakazakii invasion of human brain microvascular endothelial cells
Cronobacter sakazakii (C. sakazakii) is an opportunistic pathogen that can cause neonatal sepsis and meningitis. The mechanism involved in the pathogenesis of C. sakazakii meningitis remains largely unknown. Previous studies indicated that bacterial invasion of brain microvascular endothelial cells is required for penetration into the central nervous system. In this study, we found that C. sakazakii invasion of human brain microvascular endothelial cells (HBMEC) was significantly inhibited by cytochalasin D, a disrupting agent of actin microfilaments. Disassembly of actin stress fibers and cortical actin fibers was observed in HBMEC infected with C. sakazakii. C. sakazakii infection leads to increased Akt phosphorylation in HBMEC, which was blocked by treatment with PI3K inhibitors. Meanwhile, PI3K and Akt inhibitors significantly inhibited C. sakazakii invasion of HBMEC. Our further results illustrated that the C. sakazakii-induced Akt activation and C. sakazakii invasion were attenuated in HBMEC transfected with dominant-negative PI3K (Δp110). More importantly, the actin filaments rearrangements in HBMEC induced by C. sakazakii were effectively blocked by PI3K inhibitors treatment and transfection with Δp110. Taken together, our findings demonstrated that PI3K-mediated actin rearrangements are required for C. sakazakii invasion of HBMEC.
- China Medical University China (People's Republic of)
- Centers for Disease Control and Prevention United States
- State Key Laboratory of Cell Biology China (People's Republic of)
Phosphatidylinositol 3-Kinases, Cytochalasin D, Enterobacteriaceae, Endothelial Cells, Humans, Phosphorylation, Actins, Cells, Cultured, Phosphoinositide-3 Kinase Inhibitors
Phosphatidylinositol 3-Kinases, Cytochalasin D, Enterobacteriaceae, Endothelial Cells, Humans, Phosphorylation, Actins, Cells, Cultured, Phosphoinositide-3 Kinase Inhibitors
9 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
