Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2005 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2005
versions View all 3 versions

A transposon‐based activation‐tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations

Authors: Schneider, Anja; Kirch, Thomas; Gigolashvili, Tamara; Mock, Hans-Peter; Sonnewald, Uwe; Simon, Rüdiger; Flügge, Ulf-Ingo; +1 Authors

A transposon‐based activation‐tagging population in Arabidopsis thaliana (TAMARA) and its application in the identification of dominant developmental and metabolic mutations

Abstract

A population of 9471 stable activation‐tagged lines was generated by transposable element mediated activation tagging mutagenesis in Arabidopsis (TAMARA) using the maize En/Spm transposon system. Based on DNA gel blot and flanking sequence analysis, this population contains approximately 6000 independent transposon insertions. A greenhouse‐based screen identified six dominant or semi‐dominant activation tagged mutants with obvious developmental alterations, among these a new pistillata mutant allele. In addition, a subset of 1500 lines was screened by a HPLC based high‐throughput method for dominant activation tagged mutants with enhanced contents of phenolic compounds. One dominant activation tagged mutant (hpc1‐1D) was isolated showing accumulation of a particular compound due to the upregulation of an R2R3‐MYB transcription factor.

Keywords

Activation tagging, Dominant mutation, Genetic Markers, DNA Mutational Analysis, Molecular Sequence Data, Arabidopsis, Shoot development, Chromosomes, Plant, Gene Expression Regulation, Mutagenesis, Phenylpropanoid metabolism, DNA Transposable Elements, Amino Acid Sequence, Transposon, Sequence Alignment, Sequence Tagged Sites

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
bronze