Contrasting Effects of α-Synuclein and γ-Synuclein on the Phenotype of Cysteine String Protein α (CSPα) Null Mutant Mice Suggest Distinct Function of these Proteins in Neuronal Synapses
Contrasting Effects of α-Synuclein and γ-Synuclein on the Phenotype of Cysteine String Protein α (CSPα) Null Mutant Mice Suggest Distinct Function of these Proteins in Neuronal Synapses
In neuronal synapses, neurotransmitter-loaded vesicles fuse with presynaptic plasma membrane in a complex sequence of tightly regulated events. The assembly of specialized SNARE complexes plays a pivotal role in this process. The function of the chaperone cysteine string protein α (CSPα) is important for synaptic SNARE complex formation, and mice lacking this protein develop severe synaptic dysfunction and neurodegeneration that lead to their death within 3 months after birth. Another presynaptic protein, α-synuclein, also potentiates SNARE complex formation, and its overexpression rescues the phenotype of CSPα null mutant mice, although these two proteins use different mechanisms to achieve this effect. α-Synuclein is a member of a family of three related proteins whose structural similarity suggests functional redundancy. Here, we assessed whether γ-synuclein shares the ability of α-synuclein to bind synaptic vesicles and ameliorate neurodegeneration caused by CSPα deficiency in vivo. Although the N-terminal lipid-binding domains of the two synucleins showed similar affinity for purified synaptic vesicles, the C-terminal domain of γ-synuclein was not able to interact with synaptobrevin-2/VAMP2. Consequently, overexpression of γ-synuclein did not have any noticeable effect on the phenotype of CSPα null mutant mice. Our data suggest that the functions of α- and γ-synucleins in presynaptic terminals are not fully redundant.
- University of Oxford United Kingdom
- Cardiff University United Kingdom
- Russian Academy of Sciences Russian Federation
- Institute of Physiologically Active Compounds Russian Federation
Male, Mice, Knockout, Neurons, Vesicle-Associated Membrane Protein 2, Membrane Proteins, HSP40 Heat-Shock Proteins, Protein Structure, Tertiary, Mice, Inbred C57BL, Mice, Phenotype, gamma-Synuclein, Neurobiology, Synapses, alpha-Synuclein, Animals, Humans, Female, Synaptic Vesicles, Cells, Cultured, Protein Binding
Male, Mice, Knockout, Neurons, Vesicle-Associated Membrane Protein 2, Membrane Proteins, HSP40 Heat-Shock Proteins, Protein Structure, Tertiary, Mice, Inbred C57BL, Mice, Phenotype, gamma-Synuclein, Neurobiology, Synapses, alpha-Synuclein, Animals, Humans, Female, Synaptic Vesicles, Cells, Cultured, Protein Binding
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
