Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2005 . Peer-reviewed
Data sources: Crossref
UNC Dataverse
Article . 2005
Data sources: Datacite
versions View all 3 versions

Parallel evolution of chimeric fusion genes

Authors: David J. Begun; Corbin D. Jones;
Abstract

To understand how novel functions arise, we must identify common patterns and mechanisms shaping the evolution of new genes. Here, we take advantage of data from three Drosophila genes, jingwei , Adh-Finnegan , and Adh-Twain , to find evolutionary patterns and mechanisms governing the evolution of new genes. All three of these genes are independently derived from Adh , which enabled us to use the extensive literature on Adh in Drosophila to guide our analyses. We discovered a fundamental similarity in the temporal, spatial, and types of amino acid changes that occurred. All three genes underwent rapid adaptive amino acid evolution shortly after they were formed, followed by later quiescence and functional constraint. These genes also show striking parallels in which amino acids change in the Adh region. We showed that these early changes tend to occur at amino acid residues that seldom, if ever, evolve in Drosophila Adh . Changes at these slowly evolving sites are usually associated with loss of function or hypomorphic mutations in Drosophila melanogaster . Our data indicate that shifting away from ancestral functions may be a critical step early in the evolution of chimeric fusion genes. We suggest that the patterns we observed are both general and predictive.

Keywords

Likelihood Functions, Models, Genetic, Adaptation, Biological, Alcohol Dehydrogenase, Computational Biology, Evolution, Molecular, Alcohol Oxidoreductases, Species Specificity, Animals, Drosophila Proteins, Drosophila, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
bronze