Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2000 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2000
versions View all 2 versions

A receptor for phosphatidylserine-specific clearance of apoptotic cells

Authors: V A, Fadok; D L, Bratton; D M, Rose; A, Pearson; R A, Ezekewitz; P M, Henson;

A receptor for phosphatidylserine-specific clearance of apoptotic cells

Abstract

cytosis of cellular corpses. During apoptosis, the asymmetry of plasma membrane phospholipids is lost, which exposes phosphatidylserine externally. The phagocytosis of apoptotic cells can be inhibited stereospecifically by phosphatidylserine and its structural analogues, but not by other anionic phospholipids, suggesting that phosphatidylserine is specifically recognized. Using phage display, we have cloned a gene that appears to recognize phosphatidylserine on apoptotic cells. Here we show that this gene, when transfected into B and T lymphocytes, enables them to recognize and engulf apoptotic cells in a phosphatidylserine-specific manner. Flow cytometric analysis using a monoclonal antibody suggested that the protein is expressed on the surface of macrophages, fibroblasts and epithelial cells; this antibody, like phosphatidylserine liposomes, inhibited the phagocytosis of apoptotic cells and, in macrophages, induced an anti-inflammatory state. This candidate phosphatidylserine receptor is highly homologous to genes of unknown function in Caenorhabditis elegans and Drosophila melanogaster, suggesting that phosphatidylserine recognition on apoptotic cells during their removal by phagocytes is highly conserved throughout phylogeny.

Related Organizations
Keywords

B-Lymphocytes, Jumonji Domain-Containing Histone Demethylases, Sequence Homology, Amino Acid, Macrophages, Blotting, Western, Molecular Sequence Data, Antibodies, Monoclonal, Apoptosis, Receptors, Cell Surface, Phosphatidylserines, Flow Cytometry, Cell Line, Jurkat Cells, Mice, Phagocytosis, Liposomes, Animals, Humans, Amino Acid Sequence, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.01%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 0.01%