Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Zagreb...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Psychiatry Research
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

The influence of 5-HT2C and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients

Authors: Rojnić Kuzman, Martina; Medved, Vesna; Božina, Nada; Hotujac, Ljubomir; Šain, Ivica; Bilušić, Hrvoje;

The influence of 5-HT2C and MDR1 genetic polymorphisms on antipsychotic-induced weight gain in female schizophrenic patients

Abstract

We investigated the relationships between functional genetic variants of the 5-HT(2C) receptor and multidrug-resistant protein (MDR1), coding for P-glycoprotein, and second generation antipsychotic (SDA)-induced weight gain among 108 female schizophrenic patients treated with olanzapine or risperidone for up to 4 months. No significant differences in -759C/T allelic and genotype variants of 5-HT(2C) were found between patients who gained more than 7% of their initial weight compared with those who gained less. Haplotype-based analysis of two MDR1 loci, exon 21 G2677T and exon 26 C3435T, revealed a slightly lower representation of the G2677/C3435 haplotype in the >or=7% group. In the subgroup of patients treated with risperidone, we found borderline overrepresentation of 2677T, significant overrepresentation of 3435T variant and borderline overrepresentation of 2677T/3435T haplotype the >or=7% group, whereas G2677/C3435 haplotype was found to be less represented in the >or=7% group. Our data indicate a nonsignificant role of 759C/T 5-HT(2C) in SDA-induced weight gain, and a stronger influence of the MDR1 G2677T and C3435T polymorphisms on risperidone-induced weight gain in female schizophrenic patients. 3435T and 2677T MDR1 variants, both associated with lower P-gp function, might predispose to higher risperidone accessibility to the brain that would lead to stronger effects, including weight gain.

Keywords

Adult, Genotype, /, Polymorphism, Single Nucleotide, Linkage Disequilibrium, 5TH2C, Benzodiazepines, Gene Frequency, 616, MDR, Receptor, Serotonin, 5-HT2C, genetic polymorphism, Humans, Genetic Predisposition to Disease, ATP Binding Cassette Transporter, Subfamily B, Member 1, Obesity, Promoter Regions, Genetic, Polymorphism, Genetic, weight gain, Exons, genetic polymorphism; 5TH2C; MDR; weight gain, Drug Resistance, Multiple, Haplotypes, Olanzapine, Female, Genes, MDR, Antipsychotic Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    57
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
57
Top 10%
Top 10%
Top 10%
Green