Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Physiology N...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Physiology Nutrition and Metabolism
Article . 2013 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
versions View all 2 versions

Factors contributing to the fatigue-related reduction in active dorsiflexion joint range of motion

Authors: Arthur J, Cheng; Charles L, Rice;

Factors contributing to the fatigue-related reduction in active dorsiflexion joint range of motion

Abstract

Reductions in active joint range of motion (ROM) are responsible for decreased work-generating capacity during fatiguing repetitive isotonic shortening contractions. Factors responsible for impairing the joint-angle-specific net torque developed during muscle shortening could include fatigue-induced torque loss, shortening-induced torque depression in the agonist muscle, and opposing passive tension of the antagonists, but these have not been systematically explored. Nine men (aged 25.8 ± 2.0 years) performed a maximal-effort fatiguing task that consisted of repetitive loaded shortening dorsiflexions through a 40° ankle joint ROM until active ROM decreased by 50%. Torque developed during contractile shortening, as well as passive opposing tension, was quantified before and after the reduction in active ROM. Before fatigue, and compared with maximum voluntary isometric contraction torque at the terminal ROM, shortening-induced torque depression in the agonist muscle and passive tension from the antagonists reduced net torque developed at the end of contractile shortening by ∼42% and ∼19%, respectively. After fatigue, a steepened ascending joint torque–angle relationship remained during contractile shortening, but neither muscle coactivation nor contractile slowing contributed to the fatigue-induced torque loss. Fatigue-induced torque loss, shortening-induced torque depression in the agonist, and passive tension in the antagonist greatly depressed net torque developed at the end of contractile shortening. These contributed to the fatigue-induced reduction in active ROM by impairing the ability of the dorsiflexors to generate sufficient torque to overcome the imposed load at the end of contractile shortening.

Related Organizations
Keywords

Torque, Isometric Contraction, Humans, Range of Motion, Articular, Muscle, Skeletal, Muscle Contraction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average