Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Toxicological Scienc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Toxicological Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Oxidizing Effects of Exogenous Stressors in Huntington’s Disease Knock-in Striatal Cells—Protective Effect of Cystamine and Creatine

Authors: A. Cristina Rego; Luana Naia; Joana Rodrigues; Ana Silva; Márcio Ribeiro;

Oxidizing Effects of Exogenous Stressors in Huntington’s Disease Knock-in Striatal Cells—Protective Effect of Cystamine and Creatine

Abstract

Huntington's disease (HD) is a polyglutamine-expansion disease associated to degeneration of striatal and cortical neurons. Previously, we showed that oxidative stress occurs in HD knock-in striatal cells, but little is known regarding cell antioxidant response against exogenous stimuli. Therefore, in the present study we analyzed cellular antioxidant profile following hydrogen peroxide (H2O2) and staurosporine (STS) exposure and tested the protective effect of cystamine and creatine in striatal cells expressing mutant huntingtin with 111 glutamines (STHdh (Q111/Q111); mutant cells) versus wild-type cells (STHdh (Q7/Q7)). Mutant cells displayed increased mitochondrial reactive oxygen species (ROS) and decreased NADPH oxidase and xanthine oxidase (XO) activities, reflecting lower superoxide cytosolic generation, along with increased superoxide dismutases (SODs) and components of glutathione redox cycle. Exposure to H2O2 and STS enhanced ROS in mutant cells and largely increased XO activity; STS further boosted the generation of mitochondrial ROS and caspase-3 activity. Both stimuli slightly increased SOD1 activity, without affecting SOD2 activity, and decreased glutathione reductase with a consequent rise in oxidized glutathione or glutathione disulfide in mutant cells, whereas H2O2 only increased glutathione peroxidase activity. Additionally, creatine and cystamine increased mutant cells viability and prevented ROS formation in HD cells subjected to H2O2 and STS. These results indicate that elevation of the antioxidant systems accompanies mitochondrial-driven ROS generation in mutant striatal cells and that exposure to noxious stimuli induces a higher susceptibility to oxidative stress by increasing XO activity and lowering the antioxidant response. Furthermore, creatine and cystamine are efficient in preventing H2O2- and STS-evoked ROS formation in HD striatal cells.

Keywords

Oxidative Stress, Huntington Disease, Creatinine, Cystamine, Humans, Hydrogen Peroxide, Reactive Oxygen Species, Staurosporine, Corpus Striatum, Enzymes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    34
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
34
Top 10%
Average
Top 10%
bronze