Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://content.scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2478/v10006...
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids

Authors: Collignon, Tijmen P.; Van Gijzen, Martin B.;

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing grids

Abstract

Two implementations of the preconditioned conjugate gradient method on heterogeneous computing gridsEfficient iterative solution of large linear systems on grid computers is a complex problem. The induced heterogeneity and volatile nature of the aggregated computational resources present numerous algorithmic challenges. This paper describes a case study regarding iterative solution of large sparse linear systems on grid computers within the software constraints of the grid middleware GridSolve and within the algorithmic constraints of preconditioned Conjugate Gradient (CG) type methods. We identify the various bottlenecks induced by the middleware and the iterative algorithm. We consider the standard CG algorithm of Hestenes and Stiefel, and as an alternative the Chronopoulos/Gear variant, a formulation that is potentially better suited for grid computing since it requires only one synchronisation point per iteration, instead of two for standard CG. In addition, we improve the computation-to-communication ratio by maximising the work in the preconditioner. In addition to these algorithmic improvements, we also try to minimise the communication overhead within the communication model currently used by the GridSolve middleware. We present numerical experiments on 3D bubbly flow problems using heterogeneous computing hardware that show lower computing times and better speed-up for the Chronopoulos/Gear variant of conjugate gradients. Finally, we suggest extensions to both the iterative algorithm and the middleware for improving granularity.

Country
Poland
Keywords

Chronopoulos/Gear CG, 000, large sparse linear systems, iterative methods, bubbly flows, grid computing, conjugate gradient methods, GridSolve middleware, 004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
gold