An Intronic miRNA Regulates Expression of the Human Endothelial Nitric Oxide Synthase Gene and Proliferation of Endothelial Cells by a Mechanism Related to the Transcription Factor SP-1
An Intronic miRNA Regulates Expression of the Human Endothelial Nitric Oxide Synthase Gene and Proliferation of Endothelial Cells by a Mechanism Related to the Transcription Factor SP-1
This study was to investigate the molecular mechanisms underlying the 27nt-miRNA-mediated regulation of expression of the endothelial nitric oxide synthase (eNOS) gene.Cell lines overexpressing 27nt-miRNA or its mutant were established by transfecting the miRNA expression vector into the endothelial cells. eNOS mRNA and protein expression were examined by RT-PCR and Western Blotting, respectively. Luciferase activity reporter system was used to study the target of 27nt-miRNA.The results showed that overexpression of 27nt-miRNA significantly inhibited eNOS mRNA level and protein expression, and reduced the eNOS transcriptional efficiency. Such inhibitory effects of 27nt-miRNA were attenuated by the sequence mutations in 27nt-miRNA. Interestingly, the transcription factor SP-1 expression was reduced by 27nt-miRNA. Meanwhile, overxpression of SP-1 protein partially restored eNOS expression, and rescued the 27nt-miRNA-mediated reduction of endothelial cell proliferation. Moreover, certain sites in the SP-1 mRNA were found to be the direct target of 27nt-miRNA by a luciferase reporter system.These results demonstrate that the 27nt-miRNA suppresses eNOS gene expression and SP-1 expression in vascular endothelial cells. The 27nt-miRNA directly target to SP-1 mRNA, thereby contributing to proliferation of endothelial cells.
- Guangxi Medical University China (People's Republic of)
- University of South China China (People's Republic of)
Nitric Oxide Synthase Type III, Sp1 Transcription Factor, Science, Q, R, Endothelial Cells, Gene Expression, Introns, MicroRNAs, Medicine, Humans, RNA Interference, Endothelium, Vascular, Enzyme Repression, Aorta, Cells, Cultured, Research Article, Cell Proliferation
Nitric Oxide Synthase Type III, Sp1 Transcription Factor, Science, Q, R, Endothelial Cells, Gene Expression, Introns, MicroRNAs, Medicine, Humans, RNA Interference, Endothelium, Vascular, Enzyme Repression, Aorta, Cells, Cultured, Research Article, Cell Proliferation
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
