Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Phytomedicinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Phytomedicine
Article . 2021 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Phytomedicine
Article
License: CC BY NC ND
Data sources: UnpayWall
versions View all 2 versions

Effective-components combination improves airway remodeling in COPD rats by suppressing M2 macrophage polarization via the inhibition of mTORC2 activity

Authors: Zehui Cai; Yanqin Qin; Jiansheng Li; Xuefang Liu; Yange Tian; Lan Liu; Peng Zhao;

Effective-components combination improves airway remodeling in COPD rats by suppressing M2 macrophage polarization via the inhibition of mTORC2 activity

Abstract

In chronic obstructive pulmonary disease (COPD), M2 macrophages release multiple tissue repair-related factors, leading to airway remodeling, a significant pathological characteristic. Meanwhile, effective-components combination (ECC), derived from Bufei Yishen formula (BYF), is an effective treatment for COPD.To determine the potential mechanisms of ECC in airway remodeling in COPD by suppressing M2 macrophage polarization.We established a rat COPD Model using exposure to cigarette smoke and bacterial infection to investigate the efficacy of ECC. We also treated macrophages with IL-4 for 12 h to explore the in vivo effect of ECC on M2 macrophage polarization and mTORC2 signals.The disease severity of COPD rats could be alleviated by ECC treatment, which improved pulmonary function and alleviated pathological injuries in lung tissue and the inflammatory cytokine levels. Meanwhile, ECC could ameliorate airway remodeling by reducing collagen deposition, hindering airway mucus hypersecretion and smooth muscle cell proliferation, and reducing the number of M2 macrophages in the lung tissues of COPD rats. Furthermore, with IL-4-induced macrophages, we found that ECC could suppress M2 macrophage polarization by decreasing the levels of M2 macrophage markers. Finally, we discovered that ECC inhibited mTORC2 activity by examining p-mTOR2481 and its downstream protein p-Akt473.ECC exerts beneficial effects on airway remodeling in COPD rats, likely by suppressing M2 macrophage polarization via the inhibition of mTORC2 activity.

Keywords

Pulmonary Disease, Chronic Obstructive, Macrophages, Airway Remodeling, Animals, Mechanistic Target of Rapamycin Complex 2, Macrophage Activation, Rats

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
hybrid