Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cancer Researcharrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Cancer Research
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2015
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL Descartes
Article . 2015
Data sources: HAL Descartes
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL AMU
Article . 2015
Data sources: HAL AMU
Cancer Research
Article . 2015 . Peer-reviewed
Data sources: Crossref
Cancer Research
Article . 2016
versions View all 5 versions

A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis

Authors: Remy, Elisabeth; Rebouissou, Sandra; Chaouiya, Claudine; Zinovyev, Andrei; Radvanyi, François; Calzone, Laurence;

A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis

Abstract

Abstract Relationships between genetic alterations, such as co-occurrence or mutual exclusivity, are often observed in cancer, where their understanding may provide new insights into etiology and clinical management. In this study, we combined statistical analyses and computational modeling to explain patterns of genetic alterations seen in 178 patients with bladder tumors (either muscle-invasive or non–muscle-invasive). A statistical analysis on frequently altered genes identified pair associations, including co-occurrence or mutual exclusivity. Focusing on genetic alterations of protein-coding genes involved in growth factor receptor signaling, cell cycle, and apoptosis entry, we complemented this analysis with a literature search to focus on nine pairs of genetic alterations of our dataset, with subsequent verification in three other datasets available publicly. To understand the reasons and contexts of these patterns of associations while accounting for the dynamics of associated signaling pathways, we built a logical model. This model was validated first on published mutant mice data, then used to study patterns and to draw conclusions on counter-intuitive observations, allowing one to formulate predictions about conditions where combining genetic alterations benefits tumorigenesis. For example, while CDKN2A homozygous deletions occur in a context of FGFR3-activating mutations, our model suggests that additional PIK3CA mutation or p21CIP deletion would greatly favor invasiveness. Furthermore, the model sheds light on the temporal orders of gene alterations, for example, showing how mutual exclusivity of FGFR3 and TP53 mutations is interpretable if FGFR3 is mutated first. Overall, our work shows how to predict combinations of the major gene alterations leading to invasiveness through two main progression pathways in bladder cancer. Cancer Res; 75(19); 4042–52. ©2015 AACR.

Keywords

Datasets as Topic, Mice, [SDV.CAN] Life Sciences [q-bio]/Cancer, Animals, Humans, Gene Regulatory Networks, Neoplasm Invasiveness, Probability, Carcinoma, Transitional Cell, Comparative Genomic Hybridization, [SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM], Models, Genetic, Gene Expression Profiling, Epistasis, Genetic, Neoplasm Proteins, Gene Expression Regulation, Neoplastic, Cell Transformation, Neoplastic, Phenotype, Urinary Bladder Neoplasms, Mutation, Gene Deletion, Genes, Neoplasm

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%
bronze