Neprilysin-sensitive Synapse-associated Amyloid-β Peptide Oligomers Impair Neuronal Plasticity and Cognitive Function
pmid: 16636059
Neprilysin-sensitive Synapse-associated Amyloid-β Peptide Oligomers Impair Neuronal Plasticity and Cognitive Function
A subtle but chronic alteration in metabolic balance between amyloid-beta peptide (Abeta) anabolic and catabolic activities is thought to cause Abeta accumulation, leading to a decade-long pathological cascade of Alzheimer disease. However, it is still unclear whether a reduction of the catabolic activity of Abeta in the brain causes neuronal dysfunction in vivo. In the present study, to clarify a possible connection between a reduction in neprilysin activity and impairment of synaptic and cognitive functions, we cross-bred amyloid precursor protein (APP) transgenic mice (APP23) with neprilysin-deficient mice and biochemically and immunoelectron-microscopically analyzed Abeta accumulation in the brain. We also examined hippocampal synaptic plasticity using an in vivo recording technique and cognitive function using a battery of learning and memory behavior tests, including Y-maze, novel-object recognition, Morris water maze, and contextual fear conditioning tests at the age of 13-16 weeks. We present direct experimental evidence that reduced activity of neprilysin, the major Abeta-degrading enzyme, in the brain elevates oligomeric forms of Abeta at the synapses and leads to impaired hippocampal synaptic plasticity and cognitive function before the appearance of amyloid plaque load. Thus, reduced neprilysin activity appears to be a causative event that is at least partly responsible for the memory-associated symptoms of Alzheimer disease. This supports the idea that a strategy to reduce Abeta oligomers in the brain by up-regulating neprilysin activity would contribute to alleviation of these symptoms.
Male, Amyloid beta-Peptides, Neuronal Plasticity, Mice, Transgenic, Hippocampus, Peptide Fragments, Mice, Microscopy, Electron, Cognition, Alzheimer Disease, Memory, Synapses, Animals, Female, Neprilysin, Maze Learning
Male, Amyloid beta-Peptides, Neuronal Plasticity, Mice, Transgenic, Hippocampus, Peptide Fragments, Mice, Microscopy, Electron, Cognition, Alzheimer Disease, Memory, Synapses, Animals, Female, Neprilysin, Maze Learning
17 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).172 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
