<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Smurf1-Mediated Lys29-Linked Nonproteolytic Polyubiquitination of Axin Negatively Regulates Wnt/β-Catenin Signaling

Smurf1-Mediated Lys29-Linked Nonproteolytic Polyubiquitination of Axin Negatively Regulates Wnt/β-Catenin Signaling
Ubiquitination plays important and diverse roles in modulating protein functions. As a C2-WW-HECT-type ubiquitin ligase, Smad ubiquitination regulatory factor 1 (Smurf1) commonly serves to regulate ubiquitin-dependent protein degradation in a number of signaling pathways. Here, we report a novel function of Smurf1 in regulating Wnt/β-catenin signaling through targeting axin for nonproteolytic ubiquitination. Our data unambiguously demonstrate that Smurf1 ubiquitinates axin through Lys 29 (K29)-linked polyubiquitin chains. Unexpectedly, Smurf1-mediated axin ubiquitination does not lead to its degradation but instead disrupts its interaction with the Wnt coreceptors LRP5/6, which subsequently attenuates Wnt-stimulated LRP6 phosphorylation and represses Wnt/β-catenin signaling. The inhibitory function of Smurf1 on Wnt/β-catenin signaling is further evidenced by analysis with Smurf1 knockout murine embryonic fibroblasts. We next identified K789 and K821 in axin as the ubiquitination sites by Smurf1. Consistently, Smurf1 could neither disrupt the interaction of an axin(K789/821R) double mutant with LRP5/6 nor attenuate the phosphorylation of LRP6 in axin(K789/821R)-expressing cells. Collectively, our studies uncover Smurf1 as a new regulator for the Wnt/β-catenin signaling pathway via modulating the activity of axin.
- Medical Research Council United Kingdom
- Center for Excellence in Molecular Cell Science China (People's Republic of)
- State Key Laboratory of Molecular Biology China (People's Republic of)
- Shanghai Institutes for Biological Sciences China (People's Republic of)
- Chinese Academy of Sciences China (People's Republic of)
Ubiquitin, Lysine, Ubiquitin-Protein Ligases, Ubiquitination, Fibroblasts, Wnt Proteins, Mice, HEK293 Cells, Low Density Lipoprotein Receptor-Related Protein-5, Axin Protein, Gene Expression Regulation, Low Density Lipoprotein Receptor-Related Protein-6, Mutation, Animals, Humans, Phosphorylation, beta Catenin, Signal Transduction
Ubiquitin, Lysine, Ubiquitin-Protein Ligases, Ubiquitination, Fibroblasts, Wnt Proteins, Mice, HEK293 Cells, Low Density Lipoprotein Receptor-Related Protein-5, Axin Protein, Gene Expression Regulation, Low Density Lipoprotein Receptor-Related Protein-6, Mutation, Animals, Humans, Phosphorylation, beta Catenin, Signal Transduction
20 Research products, page 1 of 2
- 2017IsRelatedTo
- 2019IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%