Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Folic acid supplementation rescues anomalies associated with knockdown of parkin in dopaminergic and serotonergic neurons in Drosophila model of Parkinson's disease

Authors: Saurabh, Srivastav; Sandeep Kumar, Singh; Amarish Kumar, Yadav; Saripella, Srikrishna;

Folic acid supplementation rescues anomalies associated with knockdown of parkin in dopaminergic and serotonergic neurons in Drosophila model of Parkinson's disease

Abstract

parkin loss associated early-onset of Parkinson's disease, involves mitochondrial dysfunction and oxidative stress as the plausible decisive molecular mechanisms in disease pathogenesis. Mitochondrial dysfunction involves several up/down regulation of gene products, one of which being p53 is found to be elevated. Elevated p53 is involved in mitochondrial mediated apoptosis of neuronal cells in Parkinson's patients who are folate deficient as well. The present study therefore attempts to examine the effect of Folic acid (FA) supplementation in alleviation of anomalies associated with parkin knockdown using RNAi approach, specific to Dopaminergic (DA) neurons in Drosophila model system. Here we show that FA supplementation provide protection against parkin RNAi associated discrepancies, thereby improves locomotor ability, reduces mortality and oxidative stress, and partially improves Zn levels. Further, metabolic active cell status and ATP levels were also found to be improved thereby indicating improved mitochondrial function. To corroborate FA supplementation in mitochondrial functioning further, status of p53 and spargel was checked by qRT-PCR. Here we show that folic acid supplementation enrich mitochondrial functioning as depicted from improved spargel level and lowered p53 level, which was originally vice versa in parkin knockdown flies cultured in standard media. Our data thus support the potential of folic acid in alleviating the behavioural defects, oxidative stress, augmentation of zinc and ATP levels in parkin knock down flies. Further, folic acid role in repressing mitochondrial dysfunction is encouraging to further explore its possible mechanistic role to be utilized as potential therapeutics for Parkinson's disease.

Related Organizations
Keywords

Disease Models, Animal, Folic Acid, Dopaminergic Neurons, Gene Knockdown Techniques, Ubiquitin-Protein Ligases, Animals, Drosophila Proteins, Drosophila, Parkinson Disease, Serotonergic Neurons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Average