Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2002
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 2002 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel

Authors: Bihler, Hermann; Slayman, Clifford L.; Bertl, Adam;

Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel

Abstract

Previous descriptions by whole-cell patch clamping of the calcium-inhibited non-selective cation channel (NSC1) in the plasma membrane of Saccharomyces cerevisiae (H. Bihler, C.L. Slayman, A. Bertl, FEBS Lett. 432 (1998); S.K. Roberts, M. Fischer, G.K. Dixon, D.Sanders, J. Bacteriol. 181 (1999)) suggested that this inwardly rectifying pathway could relieve the growth inhibition normally imposed on yeast by disruption of its potassium transporters, Trk1p and Trk2p. Now, demonstration of multiple parallel effects produced by various agonists and antagonists on both NSC1 currents and growth (of trk1 Delta trk2 Delta strains), has identified this non-selective cation pathway as the primary low-affinity uptake route for potassium ions in yeast. Factors which suppress NSC1-mediated inward currents and inhibit growth of trk1 Delta trk2 Delta cells include (i) elevating extracellular calcium over the range of 10 microM-10 mM, (ii) lowering extracellular pH over the range 7.5-4, (iii) blockade of NSC1 by hygromycin B, and (iv) to a lesser extent by TEA(+). Growth of trk1 Delta trk2 Delta cells is also inhibited by lithium and ammonium; however, these ions do not inhibit NSC1, but instead enter yeast cells via NSC1. Growth inhibition by lithium ions is probably a toxic effect, whereas growth inhibition by ammonium ions probably results from competitive inhibition, i.e. displacement of intracellular potassium by entering ammonium.

Related Organizations
Keywords

570, Patch-Clamp Techniques, Saccharomyces cerevisiae Proteins, Biophysics, Saccharomyces cerevisiae, Lithium, Biochemistry, Ion Channels, Cation uptake, Cations, Salt tolerance, Calcium inhibition, info:eu-repo/classification/ddc/570, Dose-Response Relationship, Drug, Organisms, Genetically Modified, biology, Cell Biology, Hydrogen-Ion Concentration, Rubidium, Life sciences, Yeast, Non-specific channel, Potassium, Calcium, ddc:570, Hygromycin B, Membrane voltage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 10%
Top 10%
hybrid