Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a

Authors: Yasuhiro Kobayashi; Gnanasagar J. Thirukonda; Yukio Nakamura; Masanori Koide; Teruhito Yamashita; Shunsuke Uehara; Hiroyuki Kato; +2 Authors

Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a

Abstract

The canonical Wnt/β-catenin signaling pathway in osteoblast-lineage cells inhibits osteoclastogenesis through the expression of osteoprotegerin (Opg), a decoy receptor of receptor activator of Nf-κb (Rank) ligands. Wnt5a, a typical non-canonical Wnt ligand, enhances the expression of Rank in osteoclast precursors, which, in turn, promotes the Rank ligand (Rankl)-induced formation of osteoclasts. In contrast, Wnt16 and Wnt4 have been shown to inhibit the Rankl-induced formation of osteoclasts through non-canonical Wnt signals. However, the relationships among these Wnt ligands in osteoclastogenesis remained to be elucidated. We herein showed that Wnt16, but not Wnt4, inhibited the Rankl-induced osteoclastogenesis in bone marrow-derived macrophage (BMM) cultures. Wnt3a and Wnt4 inhibited the 1α,25-dihydroxy vitamin D3 (1,25D3)-induced osteoclastogenesis in co-cultures prepared from wild-type mice, but not in those from Opg(-/-) nice. Wnt16 inhibited the 1,25D3-induced formation of osteoclasts in both wild-type and Opg(-/-) co-cultures. Wnt16, Wnt4, and Wnt3a failed to inhibit the pit-forming activity of osteoclasts. Wnt16 failed to inhibit the Wnt5a-induced expression of Rank in osteoclast precursors. In contrast, Wnt5a abrogated the inhibitory effects of Wnt16 on Rankl-induced osteoclastogenesis. These results suggested that Wnt16 inhibited osteoclastogenesis, but not the function of osteoclasts and that Wnt16, an inhibitory Wnt ligand for osteoclastogenesis, regulates bone resorption in conjunction with Wnt5a.

Keywords

Mice, Knockout, Osteoprotegerin, Osteoclasts, Cell Differentiation, Coculture Techniques, Wnt-5a Protein, Wnt Proteins, Mice, Calcitriol, Animals

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%