Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Pharmacolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Pharmacology
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Hsp70:CHIP Ubiquitinates Dysfunctional but Not Native Neuronal NO Synthase

Authors: Amanda K. Davis; Natalie F. McMyn; Miranda Lau; Yoshihiro Morishima; Yoichi Osawa;

Hsp70:CHIP Ubiquitinates Dysfunctional but Not Native Neuronal NO Synthase

Abstract

Heat shock protein (Hsp) 70 modulators are being developed to enhance the removal of toxic proteins in a variety of protein misfolding diseases. In the course of our studies on neuronal nitric oxide synthase (nNOS), a client of the Hsp90 and Hsp70 chaperone system, we have established that inactivation of nNOS by heme or tetrahydrobiopterin (BH4) alteration and loss triggers ubiquitination by the Hsp70-associated E3 ligase c-terminus of Hsp70-interacting protein (CHIP) and subsequent degradation in cells. Although in cells Hsp90 and Hsp70 work together to maintain protein quality control, in this study, we specifically developed an assay to assess the selectivity of the Hsp70:CHIP complex for inactivated nNOS. We developed a highly sensitive ELISA to measure Hsp70:CHIP-dependent nNOS ubiquitination without interference from direct ubiquitination by CHIP, as evidenced by Bcl-2 associated athanogene 1-M completely abolishing ubiquitination. To further validate the assay we demonstrated, JG-98, a rhodocyanin compound that acts on Hsp70 but not its inactive structural analog JG-258, enhances the ubiquitination of nNOS 3-fold. Utilizing this assay, we have shown that the Hsp70:CHIP complex preferentially ubiquitinates heme-deficient nNOS (apo-nNOS) over heme-containing nNOS (holo-nNOS). Moreover, depletion of nNOS-bound BH4 triggers ubiquitination of holo-nNOS by the Hsp70:CHIP complex. Most importantly, JG-98 was shown to enhance the ubiquitination of only dysfunctional nNOS while leaving the native functional nNOS untouched. Thus, the finding that enhancing Hsp70:CHIP-mediated ubiquitination does not affect native proteins has important pharmacological implications. Moreover, development of a facile in vitro method for Hsp70:CHIP-mediated ubiquitination will be beneficial for testing other Hsp70 modulators. SIGNIFICANCE STATEMENT: The heat shock protein 70 (Hsp70):c-terminus of Hsp70-interacting protein (CHIP) complex facilitates the ubiquitination and subsequent degradation of several hundred-client proteins, and activation of Hsp70 has been suggested as a therapeutic strategy to enhance the degradation of disease-causing proteins. The current study shows that the pharmacological activation of Hsp70 enhances the ubiquitination of dysfunctional but not native nNOS, and it suggests that this therapeutic strategy will likely be highly selective.

Related Organizations
Keywords

Ubiquitin-Protein Ligases, Ubiquitination, Enzyme-Linked Immunosorbent Assay, Nitric Oxide Synthase Type I, DNA-Binding Proteins, Sf9 Cells, Animals, Humans, HSP70 Heat-Shock Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
bronze