Relative Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Tumor Necrosis Factor-α (TNF-α)-induced Lipolysis in Adipocytes
Relative Contribution of Adipose Triglyceride Lipase and Hormone-sensitive Lipase to Tumor Necrosis Factor-α (TNF-α)-induced Lipolysis in Adipocytes
TNF-α potently stimulates basal lipolysis in adipocytes, which may contribute to hyperlipidemia and peripheral insulin resistance in obesity. Recent studies show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) act sequentially in catalyzing the first two steps of adipose lipolysis in response to β-adrenergic stimulation. Here, we sought to determine their functional roles in TNF-α-induced lipolysis. Silencing of ATGL expression in adipocytes almost completely abolished basal and TNF-α-induced glycerol release. In comparison, the glycerol release under the same conditions was only partially decreased upon reduction in expression of either HSL or the ATGL coactivator CGI-58. Interestingly, overexpression of ATGL restored the lipolytic rates in cells with silenced HSL or CGI-58, indicating a predominant role for ATGL. While expression of ATGL, HSL and CGI-58 remains mostly unaffected, TNF-α treatment caused a rapid abrogation of the ATGL inhibitory protein G0S2. TNF-α drastically decreased the level of G0S2 mRNA, and the level of G0S2 protein could be maintained by inhibiting proteasomal protein degradation using MG-132. Furthermore, coexpression of G0S2 was able to significantly decrease TNF-α-stimulated lipolysis mediated by overexpressed ATGL or CGI-58. We propose that the early reduction in G0S2 content is permissive for TNF-α-induced lipolysis.
- Markey Cancer Center United States
- Mayo Clinic United States
- University of Kentucky United States
- University of Kentucky HealthCare United States
- Mayo Clinic United States
Tumor Necrosis Factor-alpha, Lipolysis, Cell Cycle Proteins, Lipase, 1-Acylglycerol-3-Phosphate O-Acyltransferase, Sterol Esterase, Adenoviridae, Mice, Adipose Tissue, Gene Expression Regulation, 3T3-L1 Cells, Gene Knockdown Techniques, Animals, RNA, Small Interfering
Tumor Necrosis Factor-alpha, Lipolysis, Cell Cycle Proteins, Lipase, 1-Acylglycerol-3-Phosphate O-Acyltransferase, Sterol Esterase, Adenoviridae, Mice, Adipose Tissue, Gene Expression Regulation, 3T3-L1 Cells, Gene Knockdown Techniques, Animals, RNA, Small Interfering
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).90 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
