Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH

Authors: Xiao, Zhou; Katja, Graumann; Iris, Meier;

The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH

Abstract

The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.

Related Organizations
Keywords

Nuclear Envelope, Membrane Proteins, Plants, Plant Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    41
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
41
Top 10%
Top 10%
Top 10%
bronze