Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1996 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

The Yeast Copper/Zinc Superoxide Dismutase and the Pentose Phosphate Pathway Play Overlapping Roles in Oxidative Stress Protection

Authors: K H, Slekar; D J, Kosman; V C, Culotta;

The Yeast Copper/Zinc Superoxide Dismutase and the Pentose Phosphate Pathway Play Overlapping Roles in Oxidative Stress Protection

Abstract

In Saccharomyces cerevisiae, loss of cytosolic superoxide dismutase (Sod1) results in several air-dependent mutant phenotypes, including methionine auxotrophy and oxygen sensitivity. Here we report that these two sod1Delta phenotypes were specifically suppressed by elevated expression of the TKL1 gene, encoding transketolase of the pentose phosphate pathway. The apparent connection between Sod1 and the pentose phosphate pathway prompted an investigation of mutants defective in glucose-6-phosphate dehydrogenase (Zwf1), which catalyzes the rate-limiting NADPH-producing step of this pathway. We confirmed that zwf1Delta mutants are methionine auxotrophs and report that they also are oxygen-sensitive. We determined that a functional ZWF1 gene product was required for TKL1 to suppress sod1Delta, leading us to propose that increased flux through the oxidative reactions of the pentose phosphate pathway can rescue sod1 methionine auxotrophy. To better understand this methionine growth requirement, we examined the sulfur compound requirements of sod1Delta and zwf1Delta mutants, and noted that these mutants exhibit the same apparent defect in sulfur assimilation. Our studies suggest that this defect results from the impaired redox status of aerobically grown sod1 and zwf1 mutants, implicating Sod1 and the pentose phosphate pathway as being critical for maintenance of the cellular redox state.

Keywords

Fungal Proteins, Pentose Phosphate Pathway, Oxidative Stress, Saccharomyces cerevisiae Proteins, Superoxide Dismutase, Gene Expression, Saccharomyces cerevisiae, Transketolase, Sulfur

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    198
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
198
Top 10%
Top 1%
Top 10%
gold