Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 1997 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 1997
versions View all 2 versions

Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity

Authors: R, Candau; D M, Scolnick; P, Darpino; C Y, Ying; T D, Halazonetis; S L, Berger;

Two tandem and independent sub-activation domains in the amino terminus of p53 require the adaptor complex for activity

Abstract

The ability of p53 to function as a tumor suppressor is linked to its function as a transcriptional activator, since p53 mutants that do not transactivate are unable to suppress tumor cell growth. Previous studies identified an activation domain in the amino terminal 40 residues of the protein, a region that binds to several general transcription factors and to some oncogene products. For example, mdm-2, a cellular oncoprotein, binds to this region and represses p53 transactivation. Here we describe a new activation domain within the amino terminus of p53 that maps between amino acids 40-83, and whose residues trp-53 and phe-54 are critical for function both in yeast and in mammalian cells. In vivo studies in yeast show that the new activation subdomain, unlike the previously described, is mdm-2 independent. Both p53 activation subdomains (1-40 and 40-83) require the yeast adaptor complex ADA2/ADA3/GCN5 for transcriptional activation. Moreover, since activation by p53 requires GCN5's enzymatic histone acetyltransferase domain, p53 may regulate gene expression by influencing chromatin modification.

Related Organizations
Keywords

Transcriptional Activation, Saccharomyces cerevisiae Proteins, Nuclear Proteins, Proto-Oncogene Proteins c-mdm2, Genes, p53, Peptide Mapping, Peptide Fragments, DNA-Binding Proteins, Fungal Proteins, Proto-Oncogene Proteins, Trans-Activators, Tumor Suppressor Protein p53, Protein Kinases, Histone Acetyltransferases, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    134
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
134
Top 10%
Top 10%
Top 10%
bronze