Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Heart and Circul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Heart and Circulatory Physiology
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents

Authors: Junyi, Ma; Liang, Guo; Steve J, Fiene; Blake D, Anson; James A, Thomson; Timothy J, Kamp; Kyle L, Kolaja; +2 Authors

High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents

Abstract

Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes; however, the electrophysiological properties of hiPSC-derived cardiomyocytes have yet to be fully characterized. We performed detailed electrophysiological characterization of highly pure hiPSC-derived cardiomyocytes. Action potentials (APs) were recorded from spontaneously beating cardiomyocytes using a perforated patch method and had atrial-, nodal-, and ventricular-like properties. Ventricular-like APs were more common and had maximum diastolic potentials close to those of human cardiac myocytes, AP durations were within the range of the normal human electrocardiographic QT interval, and APs showed expected sensitivity to multiple drugs (tetrodotoxin, nifedipine, and E4031). Early afterdepolarizations (EADs) were induced with E4031 and were bradycardia dependent, and EAD peak voltage varied inversely with the EAD take-off potential. Gating properties of seven ionic currents were studied including sodium ( INa), L-type calcium ( ICa), hyperpolarization-activated pacemaker ( If), transient outward potassium ( Ito), inward rectifier potassium ( IK1), and the rapidly and slowly activating components of delayed rectifier potassium ( IKrand IKs, respectively) current. The high purity and large cell numbers also enabled automated patch-clamp analysis. We conclude that these hiPSC-derived cardiomyocytes have ionic currents and channel gating properties underlying their APs and EADs that are quantitatively similar to those reported for human cardiac myocytes. These hiPSC-derived cardiomyocytes have the added advantage that they can be used in high-throughput assays, and they have the potential to impact multiple areas of cardiovascular research and therapeutic applications.

Keywords

Ion Transport, Patch-Clamp Techniques, Potassium Channels, Calcium Channels, L-Type, Induced Pluripotent Stem Cells, Sodium, Action Potentials, Fluorescent Antibody Technique, Cell Differentiation, Flow Cytometry, Cell Line, Kinetics, Heart Rate, Membrane Transport Modulators, Potassium, Humans, Calcium, Myocytes, Cardiac, Ion Channel Gating, Excitation Contraction Coupling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    676
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
676
Top 0.1%
Top 1%
Top 0.1%
bronze