Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Glycobiologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Glycobiology
Article
Data sources: UnpayWall
Glycobiology
Article . 1996 . Peer-reviewed
Data sources: Crossref
Glycobiology
Article . 1997
versions View all 2 versions

Molecular and phenotypic analysis of the S. cerevisiae MNN10 gene identifies a family of related glycosyltransferases

Authors: N, Dean; J B, Poster;

Molecular and phenotypic analysis of the S. cerevisiae MNN10 gene identifies a family of related glycosyltransferases

Abstract

The Saccharomyces cerevisiae mnn10 mutant is defective in the synthesis of N-linked oligosaccharides (Ballou et al., 1989). This mutation has no effect on O-linked sugars, but results in the accumulation of glycoproteins that contain severely truncated N-linked outer-chain oligosaccharides. We have cloned the MNN10 gene by complementation of the hygromycin B sensitivity conferred by the mutant phenotype. Sequence analysis predicts that Mnn10p is a 46.7 kDa type II membrane protein with structural features characteristic of a glycosyltransferase. Subcellular fractionation data indicate that most of the Mnn10 protein cofractionates with Golgi markers and away from markers for the endoplasmic reticulum (ER), suggesting Mnn10p is localized to the Golgi complex. A comparison of the Mnn10 protein sequence to proteins in the two different databases identified five proteins that are homologous to Mnn10p, including a well characterized Schizosaccharomyces pombe alpha 1,2 galactosyltransferase that resides in the Golgi complex. Taken together, these results suggest that MNN10 encodes a novel Golgi-localized mannosyltransferase contained in this previously unrecognized family of related sugar transferases.

Keywords

Glycosylation, Base Sequence, Molecular Sequence Data, Arabidopsis, Glycosyltransferases, Golgi Apparatus, Oligosaccharides, Sequence Homology, Saccharomyces cerevisiae, Endoplasmic Reticulum, Phenotype, Mutation, Schizosaccharomyces, Carbohydrate Conformation, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
bronze